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ABSTRACT

Most state-of-the-art methods for representation learning are
supervised, which require a large number of labeled data.
This paper explores a novel unsupervised approach for learn-
ing visual representation. We introduce an image-wise dis-
crimination criterion in addition to a pixel-wise reconstruc-
tion criterion to model both individual images and the differ-
ence between original images and reconstructed ones during
neural network training. These criteria induce networks to fo-
cus on not only local features but also global high-level repre-
sentations, so as to provide a competitive alternative to super-
vised representation learning methods, especially in the case
of limited labeled data. We further introduce a competition
mechanism to drive each component to increase its capability
to win its adversary. In this way, the identity of represen-
tations and the likeness of reconstructed images to original
ones are alternately improved. Experimental results on sev-
eral tasks demonstrate the effectiveness of our approach.

Index Terms— Unsupervised representation learning,
adversarial learning, autoencoders

1. INTRODUCTION

The choice of data representation primarily determines the
performance of subsequent tasks, such as image classifica-
tion [1] and object recognition [2, 3, 4], and the evolution of
data representation largely contributes to the development of
computer vision. Therefore, researchers are constantly com-
mitted to seeking and exploring effective representations for
visual tasks. At the initial stage, researchers were dedicated
to the design of preprocessing pipelines and transformations
on the basis of considerable domain expertise and careful en-
gineering, such as SIFT [2]. However, these hand-crafted
features fail to capture high-level representation and thereby
their performances are unsatisfactory. Recently, deep learn-
ing methods automatically learn multiple levels of representa-
tions from raw data, and drastically improve the performance
in a series of tasks in computer vision [1, 3, 4]. However,
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the majority of deep learning algorithms belong to supervised
learning paradigm, whose performances are highly dependent
on large-scale labeled datasets which are not always available.

Compared to supervised learning methods, unsupervised
learning techniques only employ available unlabeled data,
and thereby are more flexible to handle. However, their per-
formances are usually far inferior to their supervised coun-
terparts. Recently, Generative Adversarial Nets (GAN) [5]
substantially improves the quality of generated samples by in-
troducing a discriminate model to combat with the generative
model. However, most of the current work on GAN models
focuses on image generation that maps latent variables to im-
ages, and only a few work involves representation extraction
that projects image space to latent space. ALI [6] and BiGAN
[7] introduce an extra network into GAN to learn the inverse
mapping that projects data space to latent space. Although
such methods achieve competitive performance when learned
features are transferred to object detection and classification
tasks, these generation based methods essentially extract co-
occurrence statistics of features instead of distinctive features.

In this paper, we design an unsupervised representation
learning framework to automatically learn a direct mapping
from image space to representation space inspired by the
adversarial mechanism of GAN models. On the one hand,
we apportion the unsupervised representation learning task to
two “pretext” tasks: reconstruction and discrimination. In ad-
dition to concentrating on low-level features driven by the re-
construction task as vanilla autoencoders [8] and regularized
autoencoders, the proposed model further focuses on high-
level representations, such as recognizable patterns, through
the discrimination task. Achieving all of these, we only in-
troduce a simple binary classifier to the framework of vanilla
autoencoders. On the other hand, we introduce a competition
mechanism to further enhance the distinction of representa-
tion and improve the resemblance of reconstructed image to
original ones. Except that the encoder and the decoder are
optimized in accordance with the reconstruction criterion, a
discriminator composed of the encoder and the binary clas-
sifier competes with the decoder according to the discrimi-
nation criterion. Furthermore, we derive the compatibility of
these two criteria in theory and valid the effectiveness of pro-
posed model through a series of visual applications.
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2. RELATED WORK

Representation learning focuses on extracting useful informa-
tion of data to solve machine learning tasks, including classifi-
cation and prediction. Unsupervised learning methods resort
to available unlabeled data and adopt some ”pretext“ tasks
to learn useful representations. One family of such meth-
ods are probabilistic models that find a parsimonious set of
latent variables to describe the distribution of data, such as
RBMs [9], but they become complicated and intractable with
deep network architectures. Another category seek to directly
learn a mapping between data space and representation space,
represented by autoencoder family [8, 10]. However, such
reconstruction-based methods tend to be trapped in low-level
features and thereby fail to solve complex semantic tasks,
such as object detection and image classification.

Another thread of unsupervised representation learning is
the generative model. For instance, GAN [5] and DCGAN
[11] models generate high-quality images from latent space
and have demonstrated the relationship between certain latent
elements and gender. ALI [6] and BiGAN [7] further intro-
duce an inference model to GAN framework to map image
space back to latent space. However, all of these models es-
sentially seek to learn a mapping that transforms a fixed sim-
ple probability distribution, such as Gaussian distribution or
uniform distribution, to the implicit distribution of data, in-
stead of attempting to extract representations of data. Even if
the ALI and BiGAN models learn an extra inference network,
the latent variable assigned to each data is randomly sam-
pled from prior distribution during training phase so that these
methods essentially learn co-occurrence statistics of features.
The deviation between the priori distribution and the real dis-
tribution of latent variables, nevertheless, will lead to the in-
accuracy of captured statistics characteristics. Furthermore,
these statistics characteristics are not necessarily equivalent to
distinctive and discernible features. Although we also utilize
game playing of GAN, our method differs from them in: (1)
our approach automatically extracts representations from raw
data through classification and reconstruction tasks without
any hypothesis about the priori distribution of representations,
which is the same as supervised representation methods; (2)
our method shares most of the architectures between the infer-
ence network and the discrimination network instead of using
two separate networks, which enables the inference network
to be driven by both criteria to focus on different aspects of
representation and at the mean time saves a large number of
free parameters to avoid overfitting.

3. ADVERSARIAL MECHANISM EMBEDDED
AUTOENCODERS

In this section, we introduce the framework of adversarial
mechanism embedded autoencoders (AME-AE), describe its
learning procedure, and derive some theoretical results.

3.1. Framework

The framework of our approach, as shown in Fig.1 (a), con-
sists of an encoder (E), a decoder (D), and a discrimina-
tor (Dis) composed of the encoder cascaded with a classi-
fier (C). The encoder produces representation of input image
h = E(x), the decoder reconstructs image from the represen-
tation x̂ = D(h), and the discriminator tells the original im-
age x from the reconstructed one x̂. Compared to autoencoder
families, we introduce an extra classifier, based on which
we share the encoder to construct the discriminator, as illus-
trated in Fig.1 (b). The introduction of the classifier brings in
discrimination-based criterion in addition to reconstruction-
based criterion, so as to prevent learned representations from
being trapped in low-level phenomenon. Note that our ap-
proach is unsupervised, because the category of binary classi-
fication is just the original image as well as the reconstructed
image which is the byproduct of decoder without any labeled
information. Furthermore, the reuse of the encoder in the dis-
criminator saves the free parameters and makes it possible
to drive the encoder by both reconstruction and classification
criteria to focus on different aspects of representations.

3.2. Training Criteria

To efficiently learn representations of data, our approach con-
sists of two “pretext” tasks: reconstruction and discrimina-
tion. On the one hand, as with vanilla autoencoders, the en-
coder along with decoder is jointly optimized on the basis of
reconstruction criterion. On the other hand, the discriminator
is updated in line with discrimination criterion. In stead of
utilizing cross-entropy loss, we introduce adversarial loss to
make the discriminator compete with the decoder.

Reconstruction Criterion. We use the Mean Square Er-
ror (MSE) as reconstruction loss function:

min
E,D

Lrec = Ex∼pd(x)∥x
i − x̂i∥22

= Ex∼pd(x)∥x
i −D(E(xi))∥22.

(1)

Discrimination Criterion. We make the discriminator
compete with its adversary the decoder. Concretely, the dis-
criminator is optimized to identify the category of original im-
ages or reconstructed images as accurately as possible, while
the decoder is trained to improve the similarity between re-
constructed images and original images in order to deceive
the discriminator. Competition drives both models to improve
their performances. In other words, they are optimized based
on the following adversarial loss function:

max
E,C

min
D

Ldis =Ex∼pd(x)[log(Dis(xi))

+ log(1−Dis(D(E(xi))))],
(2)

with Dis , C ◦ E and ‘◦’ meaning composite operation.
For balancing the decoder and discriminator, we utilize non-
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Fig. 1. (a) The framework of adversarial mechanism embedded autoencoders. The black arrow indicates the flow of input data,
while the red arrow shows the flow of reconstructed data. (b) The relationship between the encoder, classifier, and discriminator.

saturating loss for the decoder in practice:

max
D

Ldis = Ex∼pd(x)[log(Dis(D(E(xi))))]. (3)

Joint Criteria. These losses are weighted to obtain the
final cost function:

min
E,D,C

L(E,D,C) = −λdisLdis + λrecLrec. (4)

We alternatively optimize the encoder together with clas-
sifier and the decoder on the basis of the joint criteria using
gradient-based methods with minibatches of samples approx-
imating expectation terms.

3.3. Optimality

The introduction of the classifier amortizes representation
learning task over the reconstruction and discrimination “pre-
text” tasks to drive the encoder to focus on different aspects
of features. Nonetheless, it is unclear whether the criteria cor-
responding to these two tasks are compatible. In this section,
we theoretically derive the optimal solutions of these criteria
and demonstrate that the optima solutions are consistent.

Proposition 1. For any encoder and decoder, the optimal
classifier C is

C∗(h) =
qd(h)

qd(h) + qr(h)
, (5)

with qd and qr indicate the distributions of the representations
of original data and the representations of reconstructed data,
respectively.

Based on the optimal classifier, we further explore the
characteristic of the encoder and decoder under the discrimi-
nation criterion.

Proposition 2. Under an optimal classifier C∗ and any
encoder E, the objective of the decoder D V1(D) :=
maxC Ldis(C,E,D) = Ldis(C

∗, E,D) can be reformulated
as the Jensen-Shanon divergence, and achieves its minimum
if and only if qd = qr, and D = E−1 is a minimum point.

Note that D = E−1 is the global minimum of the recon-
struction criterion Lrec(D,E). On this basis, we are able to
obtain the constraints of optimal encoder and decoder under
joint criteria.

Theorem 1. Under an optimal classifier C∗ and any
given encoder E, the decoder D minimizes the loss func-
tion V (D) := λdisV1(D) + λrecV2(D) ,with V2(D) :=
Lrec(E,D), and achieves its minimum if and only D = E−1.

Therefore, the reconstruction criterion and discrimination
criterion are compatible and the constraints of optimal en-
coder and decoder are consistent that they are inverses. The
proof is stated in the supplemental material.

3.4. Discussion

Our approach takes the advantages of reconstruction crite-
rion and discrimination criterion and makes them comple-
ment each other. On the one hand, the reconstruction crite-
rion leads the encoder to extract low-level features, such as
texture and brightness, because the MSE loss implicitly con-
centrates on features responding to significant brightness vari-
ations. On the other hand, the discrimination criterion induces
the encoder to focus on recognizable patterns. According to
[12], generative models trained with adversarial loss can even
generate elaborate structured patterns composed of a small
number of pixels without significant intensity variations well,
such as ears, which is impossible under MSE loss. For this
reason, it is reasonable to infer that that the adversarial loss
implicitly specifies structured patterns as salient features.

Furthermore, according to the training procedure of ad-
versarial based methods, it is through the discriminator that
the adversarial loss acts on the generator. In other words, the
adversarial loss resorts to the discriminator to extract and se-
lect features. Therefore, the adversarial loss implicitly leads
the discriminator to respond to structured pattern features.
The framework of our approach reconciles the MSE loss and
the adversarial loss and enables us to directly apply them to
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Fig. 2. Visualization of the convergence process of training
phase. The first row presents an original image and several
reconstructed images at different epoches, while the second
row shows the corresponding histograms of the RGB three-
channel distributions of pixel-wise differences between the
original image and reconstructed ones.
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(b) Illustration of operations of group shortcuts.

Fig. 3. Building blocks: residual modules and shortcuts. The
‘∗’ and ‘Conv’ mean convolution operation, and the ‘⋆’ as
well as ‘Convt’ indicate transposed convolution operation.
For each layer, the formation is operation, filter kernel size,
output channels, (stride, default =1).

the encoder, which drives the encoder to extract local low-
level features as well as global high-level structured patterns.
In addition, the adversarial loss alone is unstable and sensitive
to hyperparameters in practice, the introduction of MSE loss
alleviates this problems to some extent.

Similar to the ALI and BiGAN models, it is hard to pro-
vide theoretical analysis of convergence due to complex de-
pendency. We utilize experiment results to illustrate the pro-
posed algorithm approximately converges to the optimal so-
lution. According to Fig.2, the RGB three-channel distribu-
tions of pixel-wise differences between the original image and
reconstructed images gradually concentrate to 0, which indi-
cates the reconstructed image converging to the original im-
age and thereby the constraint of optimal solution is satisfied.

4. EVALUATION

4.1. Network Architecture and Configuration

Since the encoder and decoder are both deep networks and
composed of considerable parameters, it is a challenge to en-
sure the effective propagation of information and gradient
through these two networks. To this end, we propose two
kinds of residual building blocks: the P-Res module and U-
Res module, as shown in Fig.3. The P-Res module is a mod-
ified version of the “bottleneck” building block, which con-
sists of three convolution layers and a group projection (GP)
shortcut composed of average pooling and group convolution.
Inspired by image super-resolution technology [13], the U-
Res module is designed to reconstruct image through step by
step improvement. Concretely, a low-resolution feature map
f is mapped to a rough one F̂ as the size of high-resolution
one through the group up projection (GUP) shortcut, at the
same time the residual or fine details F − F̂ is ameliorated
through a transposed convolution layer along with a convo-
lution layer. The GUP shortcut contains few parameters and
consists of group transposed convolution. Note that P-Res
and U-Res these two building blocks provide a highway to
propagate information and gradient, and at the same time re-
duce the parameters to a great extent.

We implement the proposed AME-AE framework on
Matconvnet [14], and apply it to two datasets: MNIST and
STL-10. The encoder and the decoder are respectively de-
signed as a residual convolution network composed of the P-
Res modules and a residual deconvolution network consisting
of the U-Res modules, and the classifier is a shallow neural
network. We take ADAM as solver for optimization, with
β1 = 0.5, β2 = 0.999, and initial learning rate 1e−4. Hyper-
parameters λdis and λrec vary with tasks. More details about
the network architectures are stated in supplemental material.

4.2. Image Classification

Since classification is the most basic and widely used appli-
cation, we firstly evaluate the performance of learned repre-
sentation on image classification. We take the encoder unsu-
pervisedly trained on STL-10 unlabeled set as a fixed feature
extractor, and apply a 4-quadrant max-pooling on each feature
map of the encoder to obtain representations of data. Then a
linear L2 regularized SVM is trained on such representations.
We report the results using standard training and testing proto-
cols of STL-10 dataset in Table 1. We compare our approach
with various regularized autoencoders, classical unsupervised
learning methods, and a supervised network. For fair compar-
ison, all of the autoencoders and the supervised network share
the same encoder architecture as the proposed AME-AE.

On the one hand, according to the first group of Table 1,
the proposed AME-AE framework overwhelms all the other
common regularized autoencoders with about 5 percentage
and more. Furthermore, we take three kinds of autoencoders



Table 1. Image classification on the STL-10 dataset.

method accuracy(%)
AE 49.5 ± 0.7
DAE 49.7 ± 0.4
Sparse AE 53.8 ± 0.6
AME-AE 58.1 ± 0.6
Sparse AME-AE 58.2 ± 0.8
Denoising AME-AE 60.7 ± 0.7
K-means [15] 51.5 ± 1.7
ICA [16] 52.9
Sparse filtering [17] 53.5 ± 0.5
SC [18] 59.0 ± 0.8
DLIF [19] 61.0
EPLS [20] 61.0 ± 0.6
DCGAN [11] 63.8 ± 0.5
Supervised net with same architecture 52.2 ± 1.6

and place them into the framework of AME-AE to further
validate the effect of discrimination criterion. Vanilla au-
toencoder (AE) and AME-AE, denoising autoencoder (DAE)
and Denoising AME-AE, Sparse AE and Sparse AME-AE
are such three pairs that one of each pair is a certain autoen-
coder and another is its AME-AE counterpart. For all these
three pairs, the proposed framework respectively improves
accuracy performances by 8.65, 11.18, and 4.45 percentage.
Therefore, the cooperation of discrimination and reconstruc-
tion tasks enhances the capability of the encoder to extract
high-level features for classification.

On the other hand, the proposed method achieves compet-
itive performance with other unsupervised learning methods,
as shown in the second group of Table 1. Although the DC-
GAN model surpasses the proposed model, the number of its
features are 1.3 times larger than the proposed model due to
network architecture differences and thereby it can contain
more information. In addition, the performance of supervised
net is inferior to the proposed AME-AE due to limitation of
labeled data, which further validates the effect of the AME-
AE framework in the case of limited labeled data.

4.3. Image Reconstruction

In this subsection, we investigate the reconstruction perfor-
mance. On the STL-10 dataset, we compare reconstruction
performance with the DeconvNet [21] which takes the MSE
reconstruction loss as target function. As shown in Fig.4 (b),
the AME-AE can accurately reconstruct the input images ex-
cept for certain details even from the last (11th) layer of the
encoder, while the images reconstructed by the DeconvNet
even from the first layer are mottled and distorted and become
worse with the increment of the depth of layer.

Furthermore, we investigate the robustness of representa-
tion to noises through reconstruction on the MNIST dataset.

(a) Reconstruction on the MNIST dataset.The odd columns are (corrupted)
input images with 0%, 20%, 40%, 60%, 80% pixels dropped out from left
to right, while the even columns are corresponding reconstructed ones.

(b) Reconstruction on the STL dataset. The first to the last rows present
original images, reconstructed images from proposed AME-AE, recon-
structed ones from the first and second layers of the DecovNet [21] in turn.

Fig. 4. Results of image reconstruction.

Fig. 5. Digits and images obtained by decoding the linearly
interpolated representations. The left and right columns are
original pairs and middle columns are interpolated ones.

We sample several handwritten digits and corrupt them by
randomly setting some pixels to 0, which are then compressed
and reconstructed through the encoder and decoder. Accord-
ing to Fig.4 (a), the reconstructed images are almost perfect
even with 40% of pixels off. Note that there is not any cor-
ruption operations on input data during training phase. These
results demonstrate that learned representations focus on the
structure patterns rather than brightness factors of images and
thereby are robust for the heavy noises.

4.4. Manifold Learning

We further explore and interpret the characteristic of learned
representations from the perspective of manifold learning.
First, we explore representation space through interpolation in
representation space and reconstruct images from the interpo-
lated representations. As shown in Fig. 5, digit 1 is smoothly
transformed to digit 7, and a fighter under the blue sky is grad-
ually transited to an airliner under gray sky. These seman-
tic variations indicate that the encoder learns relevant high-
level representations and the mapping between representation
space and data space is sensitive to variations in representa-



tion space. On the other hand, the robustness of reconstructed
images to noise, as shown in Fig.4 (a), reveals that the added
noises are orthogonal to representation space. In summary,
the mapping between representation space and data space is
sensitive to variations in representation space but insensitive
to noises orthogonal to representation space, which indicates
the representations of AME-AE capture the manifold.

5. CONCLUSION

We have proposed a novel unsupervised learning framework
that brings in competition and discrimination mechanisms.
The joint training criteria of reconstruction and discrimination
substantially enhances the ability of encoder to extract global
high-level representations. Furthermore, we obtain a theoreti-
cal conclusion about the consistency of these training criteria.
The effectiveness of learned representation is validated and
analyzed through image classification and manifold learning.
In the future, the framework could be further extended to a
multi-modal one.
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